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Software and datasets 

 

SUPPA2 is available at https://github.com/comprna/SUPPA  

Commands and datasets used in this work are available at 

https://github.com/comprna/SUPPA_supplementary_data 

 
 
SUPPA2 
 
As SUPPA [1], SUPPA2 generates events from a gene annotation and keeps track of the 
transcripts that contribute to each event [1]. An alternative splicing event is the 
representation of a local variation of the exon-intron structure that is defined by the 
transcripts that cover that genic region, and is represented in binary form, e.g. inclusion and 
skipping of a cassette exon. Accordingly, an event is characterized in terms of the sets of 
transcripts that describe either form of the event, which can be denoted as F1 and F2. For 
instance, for the exon cassette event (SE), F1 represents the transcripts that include the 
exon, whereas F2 represents the transcripts that skip the exon. The inclusion value, 
proportion spliced-in (PSI), or percent spliced-in when scaled between 0 and 100%, of an 
event is defined as the ratio of the abundance of transcripts that include one form of the 



event, F1, over the abundance of the transcripts that contain either form of the event [2]. That 
is, given the abundances for the transcripts isoforms in transcript per million units (TPM) [3], 
which we denote as TPMk, SUPPA2 calculates the PSI for an event as follows: 

PSI =
TPMk

k∈F1

∑

TPM j
j∈F1∪F2

∑
 

    
SUPPA2 generates different alternative splicing event types from an input annotation file in 
GTF format: exon skipping (SE), alternative 5’ and 3’ splice-sites (A5/A3), mutually exclusive 
exons (MX), intron retention (RI), and alternative first and last exons (AF/AL). The PSI value 
for an event is calculated with respect to one of the two forms of the event. Further details on 
how the events are defined and PSIs calculated are given at 
https://github.com/comprna/SUPPA.  
 
As the uncertainty on the PSI value increases at low expression, SUPPA2 allows fixing a 
lower bound b for the total expression (denominator in the formula above) for the calculation 
of the PSI:  
 

TPM j
j∈F1∪F2

∑ > b   

 
The default is no filter, i.e. b=0. Additionally, SUPPA2 is agnostic of the actual methodology 
for quantifying transcripts. For the analyses of this article we have used Salmon [4] to 
quantify transcripts from the Ensembl annotation. However, other methods show similar 
results [1].  
 
SUPPA2 Differential splicing  
 
Differential splicing is calculated from the files of event PSI values and transcript abundances 
in transcripts per million (TPM) units. Given two conditions, with two or more replicates per 
condition, the ΔPSI is calculated for each event as the difference of mean values between 
conditions, and this value is compared to the ΔPSI values between replicates of the same 
condition as a function of the average transcript abundance. For each event, the average 
transcript abundance between replicates is calculated in log10(TPM) units. Given TPMa,r the 
abundances of the transcripts a=1,..,n describing a given event in each replicate sample r, 
the average transcript abundance associated to this event is calculating by first adding the 
total abundance of the transcripts per replicate and then averaging over all replicates |Rc|: 

Erep =
1
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log10 TPMa,r
a
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where r=1,..,|Rc| runs over the replicates, and a runs over the transcripts that describe the 

event. For instance, for an exon cassette event, these would be the transcripts that describe 

the inclusion or the exclusion forms. Similarly, for each event we define the average 

transcript abundance between conditions adding up the TPM values for all transcripts 

describing the event in each sample, and then averaging in log10 scale between replicates 

and conditions:  
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where r=1,..,|Rc| runs over the replicates in each condition c=1,2 for each transcript a 

describing the event, and TPMa,r,c is the abundance of transcript a in the replicate r in the 

condition c. The ΔPSI value between a pair of replicates is calculated as the difference of PSI 

values, whereas the ΔPSI value between conditions is calculated as the difference of the 

means of the two conditions.  

 

Given the observed ΔPSI between conditions and Econd for an event, the significance is 

calculated by comparing with the ΔPSI distribution between replicates for events with Erep 

values similar to the observed Econd. These are obtained by selecting the closest value E*
rep 

from all points i from the background distribution: 

E
rep

* =min
i

Ei,rep −Econd{ }  

using binary search along the list of values and selecting a fixed number of events on either 

side of E*
rep. By default, we use 1000 values around the E*

rep value, including it. The selected 

window of events defines an empirical cumulative density function (ECDF) over |ΔPSI| 

values from which a p-value is calculated: 

p = 1−ECDF |ΔPSI |( )( ) / 2  

With this we are assuming that the background distribution is symmetric. That is, the 

distribution of ΔPSI values between replicates is centered around zero and with similar 

frequencies of positive and negative values. Additionally, there is an option to avoid testing 

events with |ΔPSI| value between conditions below certain threshold, which speeds up the 

analysis.  

 
SUPPA2 also includes the possibility to perform a classical statistical test between conditions 

when there are sufficient replicates (>10). In this case, the Wilcoxon rank-sum test, or 

signed-rank test if the data is paired, is applied per event to test the significance, as 

previously applied in [5]. The change of the splicing event (ΔPSI) is again defined as the 

difference of the mean PSI values in each condition. For many replicates per condition, the 



classical test is much faster than the empirical method. However, the classical test does not 

take into account the variability across replicates. For both statistical tests, SUPPA2 includes 

an option to correct for multiple testing across all events from the same gene, as they may 

not be independent from each other. Multiple test correction is performed with the Benjamini-

Hochberg method and the false discovery rate (FDR) cut-off can also be read as an input 

parameter. 

 

Comparisons can be performed between two conditions or between multiple conditions. For 

multiple conditions, the default is to compare pairwise adjacent conditions in an ordered list 

specific in the command line. Alternatively, there is also the option to perform all pairwise 

comparisons across the multiple conditions. See https://github.com/comprna/SUPPA for a 

description of the commands and options.  

 

As described above, for the calculation of PSI values, a filter on the minimum total 

expression of transcripts describing the event can be used, and has default 0. Similarly, a 

filter can be also applied at the step of differential splicing calculation. The filter is applied as 

follows: given a value X for the lower-bound of the expression, which can provided in the 

command line, we only keep events that have the average expression in each condition 

larger or equal that this expression in log10 scale: 

Erep =
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where this constrained is applied to both conditions. As the differential splicing is calculated 

in terms of the average expression in both conditions (see equation for Econd above), the 

filtering implies Econd > log10(X). However, note that the double condition that we are applying 

is stronger.  

 
Experimental datasets  
 

We have analyzed RNA sequencing (RNA-seq) data from knockdown of TRA2A+TRA2B and 

controls in MDA-MB-231 cells with 3 replicates per condition [6] (GSE59335). RT-PCR data 

for these conditions was obtained from [6] and from new experiments (this work) (RT-PCR 

performed in triplicates). We also analyzed data from Cerebellum and Liver mouse tissues 

covering 8 different time points from 2 full circadian cycles [7] (GSE54651). For the 

comparison with the RT-PCR results from [8] (validated with three replicates each) we 

compared CT28, CT40 and CT52 in Cerebellum with the same time points in Liver. We also 

analyzed the differential splicing between stimulated and unstimulated Jurkat T-cells [9] 



(SRP059357) to perform the comparison with RT-PCR results from [8]. For this comparison, 

as these the 54 RT-PCR validated events were not tested in triplicates, we only used the 30 

events that had |ΔPSI|>0.05 from the RT-PCR. We further used RNA-seq samples from a 4-

day time-course, 3 replicates each, for the differentiation of human iPS cells into bipolar 

neurons [10] (GSE60548). In this case we focused on differentially spliced events of exon-

cassette type that changed significantly and with at least |ΔPSI|>0.2 between adjacent 

stages. Additionally, we analyzed RNA-seq from differentiating human erythroblasts [11] 

(GSE53635), which is composed of 5 different differentiation steps with 3 replicates per 

condition.  

 
Simulated datasets  
 
We used the quantification of the RefSeq transcripts with RSEM [3] for the 3 control samples 
from [6] (GSE59335) as theoretical abundances (in TPM units) and considered genes with 
only two isoforms containing an skipping exon (SE) or alternative 5’/3’ splice-site (A5/A3). In 
addition, we restricted the genes for the benchmark to be associated to only 1 event and with 
absolute difference of relative abundance between the two isoforms greater than 0.2 given 
by: 

|TPM1 −TPM2 |
TPM1 +TPM2

> 0.2
 

 
where TPM1 and TPM2 are the abundances of the only two transcripts in a gene in TPM 
(transcripts per million) units. For the positive set, we selected 277 SE events and 318 A5/A3 
events and simulated differential splicing by exchanging the theoretical TPM values for these 
transcripts in a second condition in all three replicates, keeping the same theoretical 
abundances for the transcripts in all other genes. For the negative set, we selected an equal 
number of genes sampled from the entire range of values without exchanging their TPM 
values. These negative events are expected to have variability between conditions similar to 
the variability between biological replicates. 

We used RSEM [3] to simulate sequencing reads for the 2 conditions, 3 replicates each, at 
various depths: 120, 60, 25, 10 and 5 millions of 100nt paired-end reads per sample, and at 
various read lengths: 100nt, 75nt, 50nt and 25nt, at depth 25M paired-end reads (Supp. 
Tables S1-S3). For the simulated data SUPPA2 was run using transcript quantification with 
Salmon [4] on the RefSeq annotation. Simulated reads were mapped to the genome using 
TopHat [12] and STAR [13]. The benchmarking analysis was run with both. All methods 
show similar behaviour for long read-length (~100nt) and high coverage (>25M paired-end 
reads). Results shown correspond to the analyses with TopHat.  
 



For each method we calculated the events that can be considered observed or measured, 
i.e. the method recovers the coordinates of the event or regulated exon and provides a ΔPSI 
(SUPPA2, rMATS, MAJIQ) or log-fold change (for DEXSeq), regardless of whether the event 
is predicted as significant. From these recovered cases, we calculated the subset of true 
positives. A measured positive event was considered a true positive if it was statistically 
significant according to the statistical test performed by the method and had a ΔPSI change 
or log-fold change in the same direction as the simulated event, regardless of the size of this 
change. As a comparison, we also calculated true positives imposing in addition a cutoff 
|ΔPSI|>0.2 for the predictions, but saw no or very little change in the results (Additional file 2: 
Table S3).  For SUPPA2, rMATS and DEXSeq, an event was significant for a corrected p-
value < 0.05. For MAJIQ an event was considered recovered if there was at least one LSV 
with one of the inclusion junctions of the event with a calculated ΔPSI value, and it was 
considered significant if the posterior for |ΔPSI|>0.1 was > 0.95. Since all cassette events 
were defined from genes with only two transcripts, this definition of recovered event was 
unambiguous. That is, despite their very different descriptions, we could unambiguously 
match the results from SUPPA2, DEXSeq, rMATS and MAJIQ to the reference set of positive 
and negative cassette events.   
 
 
Comparison with RT-PCR data 
 
Transcripts from Ensembl (version 75 – without pseudogenes) were quantified using Salmon 
[4]. SUPPA2 was run using only transcripts with TPM > 0.1. Using transcript abundances 
from Sailfish [14] or Kallisto [15] produced similar results in the comparison to RT-PCR data 
(data not shown). RNA-seq reads were also mapped to the genome using the rMATS 
mapping pipeline, which runs TopHat [12]. All methods other than SUPPA2 were used with 
these mappings. rMATS was run using the junction and exon body reads 
(ReadsOnTargetAndJunctionCounts).  
 
SUPPA2 events of type skipping exon (SE) were matched to the RT-PCR validated events in 
each dataset. We only considered events for which the middle exon matched exactly with the 
validated exon and the flanking exons of the event coincided with those on which RT-PCR 
primers were placed. Ambiguous matches were discarded. rMATS events were matched in a 
similar way. For MAJIQ, as ΔPSI values are given per junction but junctions can be 
duplicated in different local splicing variations (LSVs), we selected the inclusion junction 
compatible with the validated event that had the largest posterior probability if there were 
two, or the only compatible inclusion junction if only one was available. For DEXSeq, as it 
only describes exonic regions, we considered the exonic regions that matched exactly the 
regulated exon of the validated event.  
 



Comparison between methods 
 
The direct comparison between alternative splicing events measured by different methods is 
not straightforward as different methods usually have a very different representation of what 
an alternative splicing variation is. We decided to focus on events of type exon cassette (SE) 
and alternative 5’ (A5) or 3’ (A3) splice site, which are the most common types and are 
described by all methods. We first identified those events that were common to SUPPA2 and 
rMATS, as they describe SE and A5/A3 events in the same way. That is, we selected events 
measured by both, but not necessarily significant. As DEXSeq works with exonic regions that 
may not always correspond to a full exon, we selected the subset of SE events for which the 
middle exon from an SE event or a variable region from an A5/A3 event matched exactly a 
DEXSeq exonic region. From these cases we eliminated the redundant cases produced by 
events describing the same regulated exon but with different pairs of flanking splicing sites. 
This set was then compared to MAJIQ, which produces local splicing variations (LSVs). Each 
LSV is composed of multiple junctions, which is the element for which a ΔPSI value and a 
statistical test is produced, and the same junction can appear in more than one LSV with 
different ΔPSI and statistical test result. We thus compared directly the selected events 
common between SUPPA2, rMATS and DEXSeq with the MAJIQ junctions. For SE events, 
we selected from MAJIQ the inclusion junction instance compatible with the event and with 
the largest posterior probability for |ΔPSI|>0.1. For A5/A3 events we selected from MAJIQ 
the junction instance that describes the form of the event that makes the intron shorter 
(which is the one for which SUPPA2 and rMATS give the PSI value) and with the largest 
posterior probability for |ΔPSI|>0.1. We further kept only those events from genes that 
showed non-zero gene expression, calculated as the sum of transcript TPMs averaged 
across the control replicates. This yielded a set of 7116 SE events and 2924 A5/A3 events 
unambiguously measured by all four methods, and which we can compare directly for effect-
size and significance.  
 
Experimental validation 
 
MDA-MB-231 breast cancer cells were cultured in DMEM media with 10% FBS and 1% 
penicillin/streptomycin until approximately 80% confluence was reached. Three biological 
replicates of Tra2 double knockdown were prepared using TRA2A and TRA2B targeting 
siRNAs (Ambion: s12749 and s26664). Control cells were transfected with scramble siRNA 
(Ambion Cat#: 4390843). Lipofectamine RNAiMAX was used for siRNA transfection following 
manufacturer’s protocol. RNA was extracted using standard Trizol RNA extraction (Life 
Technologies) following manufacturer’s instructions. cDNA was synthesized from total RNA 
using Superscript VILO cDNA synthesis kit (Invitrogen). GoTaq G2 DNA polymerase kit 
(Promega) was used to PCR-amplify the target exons using primers in flanking exons 
(primers available in Supp. Table S14). Splicing profiles were quantified using the Qiaxcel 



capillary electrophoresis system (Qiagen). Student t-test was used to test the significance of 
the splice changes between the two conditions using the 3 replicates per condition. 
    
Clustering analysis 
 
SUPPA2 currently implements two density-based clustering methods: DBSCAN [16] and 

OPTICS [17]. Density-based clustering has the advantage that one does not need to specify 

the expected number of clusters, and the choice between the two methods depends mainly 

on the computational resources and the amount of data. Both methods use the vectors of 

mean PSI values per event and require as input the minimum number of events in a cluster 

(N), which indicates the expected sizes of the possible regulatory modules; and the minimum 

separation between clusters (S), which approximates the average total difference of PSI at 

which two events are considered to behave similarly across conditions. Additionally, 

DBSCAN needs the maximum distance to consider two events as cluster partners (D), which 

OPTICS calculates through an optimization procedure. DBSCAN allows performing simple 

and fast data partitioning but has the drawback of being sensitive to the input parameters. On 

the other hand, OPTICS, which can be seen as a generalization of DBSCAN, explores the 

possible maximum values for D beyond which clustering quality drops. OPTICS can thus 

potentially produce better clustering results since it is not limited to a fixed radius of 

clustering, but it is penalized by a greater computational cost.  Clustering is only performed 

with events that change significantly in at least one pair of conditions. Additionally, there is 

the possibility to impose restrictions on the |ΔPSI| and significance p-value of the events to 

be clustered. Cluster qualities are reported using the silhouette score [18], which indicates 

how well the events are assigned to clusters; and the root mean square standard deviation 

(RMSSTD), which measures the homogeneity of each cluster. Additionally, the number of 

events in each cluster and percentage of events in clusters are also reported. Three different 

distance metrics can be currently used: Euclidean, Manhattan and Cosine. 

 

CLIP analysis 

 

Significant CLIP signals for TRA2B in MDA-MB-231 cells were obtained from [6] 

(GSE59335). Bedgraph files were converted to bed using pyicoteo [19] and only CLIP peaks 

with more than 5 reads were kept. We then calculated which of the 7116 cassette events had 

a CLIP cluster within 100nt from the event coordinates, i.e. from 100nt upstream of the 5’ 

splice-site of the 5’ exon to 100nt downstream of the 3’ splice-site of the 3’ exon. For each 

method the 7116 events were split according to whether they were found as significant or 

not, and whether they had CLIP clusters or not, and a 2x2 contingency table was built to 



perform a Fisher’s exact test. Results are given in Supp. Table S13. 

 

Motif analysis 

 

Motif enrichment analysis on the regulated events was performed using the tool MoSEA 

(https://github.com/comprna/MoSEA) [5]. This tool performs motif enrichment analysis 

between two sets of sequences: a set of interest and corresponding controls. Motifs can be 

used in terms of position weight matrices (PWMs), lists of k-mers associated to labels, or it 

can be used to do an unbiased k-mer search. For PWMs, it uses FIMO [20] to scan the 

motifs from a list of PWMs. We used PWMs from RNAcompete [21] in the regions of 200nt 

upstream, exon and 200nt downstream in exon-cassette events using as cut-off p-value < 

0.001. To this set of motifs we added the 6-mers that were detected before enriched in 

frequency and in position upstream of SRRM4-bound microexons [22] (TGCTGC, 

GCTGCC). MoSEA performs motif enrichment analysis by comparing the frequency of 

regions in differentially spliced events with a specific motif label (e.g. events with matches for 

an CELF4 motif) with 100 random subsamples of the same number of cases from non-

differentially spliced exon-cassette events, using the same region type, and controlling for 

G+C content, and for sequence length in the case of exons. MoSEA calculates an 

enrichment Z-score per motif label and region using the observed frequency and the 

frequencies in the 100 random control sets. The regions considered for exon cassette events 

are the exon itself, and 200nt upstream and downstream (see [5] for the definition of the 

regions for all alternative splicing event types). We only considered motifs with a minimum 

frequency of 20%, i.e. they occurred in 20% of the regulated events for a given specific 

region. Figure 4 only displays those enriched motifs that correspond to RBPs that are also 

differentially expressed between any two adjacent differentiation steps. The software for 

motif enrichment analysis is available at https://github.com/comprna/MOSEA. 

 

Differential expression analysis 

 

To perform differential expression analysis between adjacent stages of neuronal 

differentiation [10] we considered the transcript read counts estimated with Salmon [4] for the 

Ensembl annotation (version 75), and used tximport [23] to group transcript read counts per 

gene with scaling by transcript length and library size (lengthScaledTPM). We then used 

DESeq2 [24] with these read-counts per gene. Genes were considered differentially 

expressed for a log fold-change of |logFC|>1.2 and a corrected p-value < 0.01. The results 

for RBPs are available in Additional file 2: Table S17.  
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